Changes

Jump to: navigation, search

What is the Deep Impact of Ferrous Metallurgy

825 bytes added, 18:59, 8 March 2017
Early Development of Iron and Steel
==Early Development of Iron and Steel==
The exact origins of iron smelting are debated. It is possible this occurred already by the mid-third millennium BCE in Anatolia (modern Turkey), where a Hattic weapon made of iron was found and appeared to have derived from a smelted source. By the mid-second millennium BCE, iron tools were increasingly found in Anatolia, Mesopotamia, and Egypt. In fact, in the Late Bronze Age, from around 1400-1300 BCE, iron weapons are found in tombs. Some of the most famous are from the tomb of Tutankhamun. Although the gold and jewelry from his tomb are the most famous, the iron objects found have puzzled archaeologists. However, recent studies have shown that one of these weapons was made of meteoric iron, indicating that if iron smelting existed then it was very rare. <ref>For more on the use of early iron, see: Rapp, George Robert. 2009. <i>Archaeomineralogy.</i> 2nd ed. Natural Science in Archaeology. Berlin ; London: Springer, pg. 164.</ref>
In effect, the Late Bronze Age (1600-1200 BCE) was probably a period in which iron smelting was developing. We know Anatolia must have been an important source for iron and iron making, as texts from the ancient city of Amarna indicate a desire by the Egyptians to import iron from the Hittites, who may have been the first society to master iron making. Iron making was still very rare and trade for it was mostly done at the elite level rather than it being traded similarly as common metals such as bronze. <ref>For more on the development of iron smelting, see: Headrick, Daniel R. 2009. Technology: A World History. The New Oxford World History. Oxford ; New York: Oxford University Press, pg. 37.</ref>
Undoubtedly, the Iron Age, which first began in 1200 BCE in the Near East and spread to parts of Africa and the eastern Mediterranean, saw many new developments and mastery of iron making. Furnaces used for smelting iron, called a bloomery, now became well developed, where craftsmen were better able to control heating technologies to smelt iron and raise temperatures over 1000 degrees centigrade. After this time, and throughout the 1st millennium BCE, iron making technology spread throughout the Old World, reaching China by the 5th century BCE. Wrought iron became the primary type of iron made and forged into weapons and tools. This type of iron mostly contained iron but also had some carbon that helped to strengthen iron so that it was not too brittle. Already, it was known that adding carbon to make steel strengthened weapons so they did not easily break during battle or in using tools. <ref>For more on the spread of iron making technology, see: Schenck, Helen R.. 1980. <i>History of Technology: The Role of Metals.</i> University of Pennsylvania Museum.</ref>
Iron likely helped forge many empires that developed in the 1st millennium BCE, where the control of production now gave these states military advantage (Figure 1). While the incentives of gaining military advantage helped spread ferrous technologies, including iron and steel making, many secondary effects of this innovation began to develop. First, iron and steel produced not only better swords, spears, and axes, but cutting tools, hammers, saws, and other implements all benefited. This now made it possible to radically transform the landscape. New technologies soon emerged after the innovation of ferrous technologies, including the development of aqueducts and qanats. These water-based technologies allowed areas that were relatively dry to be more easily irrigated through major irrigation works. Iron was also more prevalent than other metals, which meant that many societies were able to benefit from this development. Large forested areas were cleared, terracing became easier, and fuel needed for iron making and other operations were more easily gathered as wood could be cut easier. In effect, the stage was set for new areas to be settled and for infrastructure expansion, including water provisioning, that allowed cities to grow.<ref>For more on the effects of iron on societies, see: Moreno Garcia, Juan Carlos, European Science Foundation, and Université Charles de Gaulle-Lille III, eds. 2016. <i>Dynamics of Production in the Ancient Near East.</i> Oxford ; Philadelphia: Oxbow Books.</ref>
[[File:14769621812 b6c6b9f7a6 b.jpg|thumbnail|Figure 1. Iron helmet; the production of iron transformed warfare.]]

Navigation menu